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ABSTRACT

. In this paper we consider the analysis of stoclastic dynamical systems .
that involve multiplicative (bilinear) noise processes, After defining the
systems of interest, we consider the evolution of the moments of such systems,
the question of stochastic stability, and estimatior for bilinear stochastic
systems., Both exact and approximace methoda of analysis are introduced and

._in particular, the uses of LLe-theoretic concepts ard harmonic analysis are’

discussedu
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ABSTRACT
In this paper we consider

the analysis of stochastic dynamical systems that
invalve multiplicative (bilinear) noise processes. After defining the sys-
tems of interest,

‘we consider the evolution of {he moments of such systems,
the question of stochastic stahility,

and estimation for bilinear stochas-
tic systems. Both exact and approximate methods of analysis are introduced,
and, ‘in particular, the uses of Lie-theoretic*concepts and harmonic.
analvsis are discussed : s ‘ :

-

, I. INTRODUCTION
"Recently, a great deal of effort ha

ass of nonlinea- s Sesses a great deal of
Structure ~- the class of biliiear systems. The mathematical tools behind
bilinear system analysis include not only many of the vector space tech-
nigues that are so valuable in 13 '

$ gone into developing a detailed
ystemg that poss

of Lie groups and iifferential geo ‘
is the purpose of this paper t> descr: _ 2ral mathematical techniques
that have been developed for tae i

The reader is-referred to [1)~{7) for detailed déscri?tions of
‘thesa techniques and for furth

some of
er references, :
.. II. STOCHASTIC BILINEAR SYSTEMS
We consider the dynamical model ‘
x(e) = [a, + ] u (t) A, lx(t) (1)
. o j=1 * i )

_where'the'Ai are given n x n matrices, the ui‘aré scalar inputs, and x is
'either'an'n-vector oY an n x n matrix, Let & be the Lie algebra generated
by_AD,'.,...,An == i.e. the smallest subspace of n X n matrices containing
Aof"f'An and closed under the'commutator product [P,Q] = PO-QP--and let
G be the Lie group associated wi

th¥ - - i.e. tle smallest group (under
matrix multiplication) containin

g exp (L} VL £ @&. It is well known that
for niecewise continuocus uii we h

ave x(t) € G x10), . If the u, are.

white noise ptoeeSsgs, we have that'x-; Gx{0) hclds almost surely
solution to the Ito equation ' - S o

for the
: i _ o R
t) = (A, -} A dv, S
dx (t) 13 (B0B850ae + | oaav )} xte) (2
' : i=1
wher: v ig a Broﬁgian'motioﬁ vich Ulav(e)dv' (0)] - ) . 1y o
smocther than white noise -~ -

for-instance §iF 4 ol Pei;
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df(t) = F(t)E(t)dt + G(t)aw(t) + alt)dt, uft) = HEVE(R) . (3)

where w is a Brownian motion. -- we needn't include the correction term
contained in (2). In this case x is not a Markov process, but the pair
(x,£) isy however, when we regard (x, D as the state, the system (1), (3)
involves products of state variables. 'As we shall see, the analyszs in
this case is more dlfflcult than in the white- nolse case.

III.. MOMENT EVOLUTION EQUATIONS .

3.1 Systems Driven by Whlte Noise _
In this subsection we present moment equatlons derived by Brockett

[4]. Consider (2) where, for simplicity, we assume that R{t) = I. Recall

that the number of llnearly lndependent homogeneous polynomlals of degree

p in n varlables fl e. f(cx T OX ) = cpf(x ,...,x )} is

1
: n+p-l . S - : _
N{(n,p) = , - . _ ' . {(4)
P : S '
We choose a basis for this space of polynomials consisting of the elements -
P PP\ PPy~ -++"P_ P, 15 n o
1 4771 - :
()G (T ) e fa e @
5] 2 n o o 1=1 T

If we denote the vector of these elements (ordered 1ex1cograph1cally) by

[p]' then ,‘xllp % le[p]][, vhere le|l = # x.. It is clear that if x

satisfies xr= Ax, then x[P] ; (Pl ?VA[p]x[p]

[p]

satlsfles x . We regard this as.

the cefinition of A
(101,{111.
. The Stratonov;ch analog of (2) is~

: : N o _ .
dx_(t) = [Adc + ] aav, (t)]x(t) ' ' (6)
' i=1 ' : ' L

» which is cloSely related to Kronecker sum matrices

Since Stratonovich equations obey the rulés'of'ordihary'éalculus; we obtain
Bl T, 01, ., Y  ipl 1, -
ax =7 () =[ dt + Z A, d_V.(t):Ix (t) N
‘Using the moment equatlons for Stratonovich equatlons, we have an evolutlon
for the pth moments o (2)

(Ai [P-].>_2}E(x 53 B S8y

4 (P! p)

dt

e

3 1
(t‘)E{AO + g

1

3.2 Sjstems Driven b Colored Toizo: Exact Fxpre nion:.

Definition 1: We assoéiate with any Lie algEQfa #its derived series

(0)"

.. = ,
J){r i}) - ‘J)fh J,fn)l " {m " it, . ,,..fhl" Ny L ”. _ i
& is dbellan if ,g = {.U} and is solvabj.e lf 2’ L) = {0} for some n.. .
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Theorem 1: A matrix Lie algebra & is solvable if and Only if there

. exists a nohéiﬁgular matrix P (possibly cqmplex-valuéd)hsuch that P -1 is

upper triangular (zero below diagonal) for all A € .

-wroof: See QR3].

‘ We now consider (1) where we assume that u is a zero mean Gaussian
random process with Elu{t}u’(s)] = P(t,s). Let % be the Lie algebra gene-
rated by AO,Al,...,AN. We claim that one can construct closed form expre-

ssions for.E[x[P](t)} if ¥ is solvable. Assuming-that L is solvable (and
that x(0) is independent of u), we can obtain a.closed form expression for
¢,, the state transition matrix for {1), as a function_of u. First we find

.the matrix P as in Theorem 1 such that each Bi_=7PAiP' is upper triangular.

Then ''e can solve the equation

¥ (R0 = DBy ¢ izl giui(t)1?uct,0). ¥, (0,0) =1 S uoe

by straightforward calculations (see the example in Subsection 4.2), and we
compute — ' ‘

x{t) %'P-l?u(t,O)P x(0) ‘ T ‘ f (ll),'

and ¥ involves nothing more cbmplicatéd than exponentials of integrals of

1i
components of u, polynomials in u, and various coﬁbinations,'products, and
integrals of such—guantities. Since u is Gaussian, we can evaluate the
expectations of such gquantities in closed form (see Subsection 4.2) and
can thus obtain a closed form expression for E[x(t)]. We can also obtain
closed form expressions for Ex®Pl ()1, as x'F’ consists of the same types
of functionals of u (see [7]). e '

3.3 Systems Driven by Colored Noise--Approximate Analysis

Conside:; the system (1) where u is given by (3}. In this section we
describe an :pproximate method that can be used for moment analysis if L
is not solval.le. This approach is based on the truncation of the cummulants
of a random process [14) and can be used for arbitrary nonlinear systems,
although it .8 particularly well-suited to systems with polynomial non-
linearities. We will illustrate the approach by example and refer the
reader to [1},[2], and {9) for more detailed discussions. '

Consider the. scalar example

it

axit) = e (£)dt + Bx(t)aw(t) S a

dt. We compute [12]

where E[dwz({)}

=
E :
i

. 2 :
amz(t), S, = 2am3{t) + B m2(t),
' L Lp2 a3
my(t) = Jom, (£) + 30%°m, (&) '

: i
where mi = EI(xX ).

From these equations it is clear that any attempt to study the properties

- of (13) must involve a truncation of the infinite set of coupled equations.
As discussed in [1] and [14], the direct truncation method ~- setting

to zero all noments greater than some given order -—‘gan_cause difficulties,

but the truncation of the cumulants -- the coefficients of the Taylor

series expahsion of the logarithm of the characteristic function -- is quite

reasonable (for instance, only the first two cumulants are nonzerc for



‘Gaussian densities). By comparing terms in the series expansions for the
characteristic funct;on, one can compute relationships between the cumu-
lants and moments. For instance, the fourth rumulant sat15f1es

s 2 :
k, =m, = 3m, 4mlm3 + 12mlm2 - 6m - {14):

Thus if we assume k, = 0 and use (14) to expr:ss m, in terms of m s i <3,

4
we can use this approximation in the moment e uations (13).

Finally, we note that the cumulants tech :.ique can be used to des1gn
suboptimal estimators for bilinear systems (s:e [2]).

- IV. STOCHASTIC STABILI' 'Y ' _ ‘

A problem of considerable theoretical an . practical interest is the
guestion of the stability of linear systems ¢ ntaining multiplicative
noise processes. As discussed in [7] and {8], :wuch systems often arise in
linear feedback systems in which the actuator. sensor, and feedback gains
may be stochastic in nature. 1In this case, a modeél such as {1) arises, in
which the u, represent the random elements in the system

Definition 2: A vector random process x is pth order stable if
{p) ' '

E{x"" (t)] is bounded for all t, and x is pth order asymptotically stable
if : : C R - '
1m ExPle)) = o0 - | (15)
" ! . .

‘The systems (1),(3) and (2) are nth order (asymptotically) stable if the
solution X is pth order (asymptotically) stable for all initial conditiors
x(0) that are independent of g (in the (1), (3} case) or the-vi(in {2)) and

such that E[x[ ](O)] < oo,

4.1 The White Noise Case 7
Consider the system (2). Using (8), WE have the followlng

.Thecrem 2: The system (2) with R=l is pth order asymptotlcally stable
if and only if the matrix

N : -
‘Ip} 1 (pl,2
Dp:AOP +—1§1 (A, Ply (16)

has all its eigenvalues in the left-half plane (Re(A)< 0). The system is
pth order stable if Dp has all its eigenvalues in Re{(X< 0 and if the

eigenvalues with real parts = 0 have all higher order residues = 0 (i.e.

]

At . :
therc are no te’ terms in e ' with Re()) = 0; see [15, p.S551).
For exarples of this result, we refer the reader to [7].

4.2. The Colored iloise Case .

We have seen in Subsection 3.2 that we can obtain closed form. moment
expr.:ssions for systems of the form given in (1) when u s a Gawitian 7
colered noise¢ process and ¥ is 'D]Vd}ﬂf We can use these exoresnions to
obtain stochastic stability criteria. We illustrate these ideas by eans
of an example (see [7] for other eramples)

xample l: Consider the system

x(t) = [.Ao + _Algl(t) + Az%(t”x(t) 7 | ' (17)

REPRODUCIBILITY OF THE
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. 12 (1 o -1 .
A =0f +A = - 1 . A =1 | ‘ - (18)
B FEE) R PO DR '
‘W1#h Ei, Eé £Ero meén and o | . | P
7 & AR Sy 1Y :
: 1] 2 7%t 2 Tt ] .
: - = =1,2 19
_E{gi(t}gi{_tﬂ)} 3 -al e + 02 e . .1_ 2 (19)
1[ 278" 2. 7%
1 - ] (20
E [ £ (t) %(t+‘l’)] 219 ¢ =0, (20)
In tnis case L is solvable, and defining y =Px , with
o Fo 1 _ : - |
P = - _ ' Lo . - 2n
we have . ’

.nl(tj..‘QJ [ n.l_(t,s}'nzt.s‘.?) (o + 51(5);63'
' )

ylt) = | 0 (22)
- 0. - le (t,0)
ni(tlﬂle flexp_'a(tz—tl) + I gi(s)ds o | (23)
t1 ’

]

Some le*:gthv but stralghtforward calculations yleld the followzng neces-
sary and suff1c1ent condlt;og for first ordex asymptotic’ StabllltV"
g7 O

d<-% f;"""F?“ : ST . (24)
S W 2 ' IR : :

and the.syStem is first order stable if equality holds in (24).

V. ESTIMATION FOR BILINEAR SYSTEMS
_ There have been a number of results obtained on est;mat;on for bili-

near systems. In this section we 1llustrate tvo classes of results. The
first of these involves estimation on nilpotent Lie groups. For such sys-
tems one can obtain finite dimensional optimal nonlinear filters [3], and
we illustrate the reésult for the 3-dimensional case in Subsection 5.1.
An approximate technque based on the use of harmonic | analysls on compact A
Lie groups is illustrated in Subsection 5.2. For more detailed discussions
of bilinear estimation, we refer the reader to {2]1,[3], [53. and [67. '

5.1 Estlmatlon on Nllpotent Lie Groups

© Definition 3: A Lie algebra L is called poipotent: iF the soguno
‘of Lie algebras L : : o ' .

LA, Ln']w{lhnl!nel.‘,"nél"}.n-> o a5

terminates in zero} Note that ahellan =>. nilpotent = solvable, but. none
of the reverse implxcations hold in general.- ) . :

< \ o 0

“




Consider the system (1) with A =0, N=3, and

010 : 0 0 1 - 0 0 0 : :
Ay = J0 0 0} , A, =10 0 0o} , A, =)0 0 1 (26)
0o 0.0} - jo o0 0 : 0 0 0 :

It is casy to see that these matrices generate a nilpotent Lze alaebra
Also, suppose that u satisfies (3) with {for simplicity) H= T and o = 0,
and let x be the 3x3 transition matrxx*fnr {1) {(i.e. x(O) = I).

ot GO e T
1 I git yao f £, (0a I { Eigojéstqé)dozdcl
PR ¢ B .0 60 o . S
Cx(t)y = 10 : 1 : T ;stc)dc‘ - = : {27)-
: 7 o . , )
o .0 , 1 I 1
L , _ | -
Suppose we have the linear observations .
- ; 2, ' - i :
dz(t) = C(t) &t)dt + R “(n)av(x) : (28)
wlere v is a Brownian motion process and R > 0. Then the condlflonal :
mean, x(t|t) = E(x(t)|z(s), 0 <'s < t), can be generated by a finite e

dimensional nonlinear leter as follows (see [2] [3} for detalls‘ - let

P(0,.0, ,t) = El{E(0,) - g(o ]t))(€(0 )~ g(o lt)z'lz(s) 0<s<t]

. (29)
Then PB(0,t, 8) = ki, 0T (t), and is nonrandcm, where '
J = FZ + P 466t - JorrTe) S . -(30)
- SRR - - : S
rum)=4rua+zcummwunuuo);xm@;=1 | '(31)
COn51der the. addltlonal state varlables 7
n(t) = &t ,; o L - (32)
tr ) ) ‘ - =1 i ' C :
“&(t) = { K3(t;0)éida E(t)=[F"' (t) + £ (t)G(t)G'It)]a(t) (33)
0 : - : -
. ) ‘ l; . o o o .
CB(t) = [e e3]n(t) IF (£) + 7 (B)ae)e' (£)18(r) ' o (34)
where n(O} = &(0) = f(0) = O Y’ in the Sth rwé.nr ¥, and e, iﬁ the
© o ith unit vector in R3 We implemﬁnf o Faduman £3 010y Foav o U4), t2iss . teay

{(34), and then

TIHB , '
UCIBILITY OF
Eﬁﬁgﬁgng SGE-IS IS POOR . . _ .



[ . -

1 naelo ﬁzc'tlt)- + yit]e)

xitlopo=]o 1 Agele ) @

o o 1

P

where.§f0|0}'9_0 and

d‘?(tit)r= [El(tlt)ﬁ3(tlt} + antt‘_,c.t)dc] at
B L (36)
+ [ (eju+Be]|e] Twe r e [z ) ~cm) £t edat)

The key to this result is the fact that K is a state transition matrix with
a finite-dimensional representation (31). Also, as mentioned earlier,

this result can be extended to arbitrary nilpotent Lie groups, scme sclvable
Lie groups, and to other nonlinear systems. The key to these extensions

is the fact that products and transposes of weighting patterns with finite-
dimensional reallzatlons also have flnite-dimensional realizations (see

£31).

5.2 The Use of Harmonic Analysis in Suboptimal Filter Design

In—this subsection we illustrate the use of harmonic analysis in bi~
linear estimation by studylng a phase tracking problem with the aid of
Fourier series analysis. For extensions of these results to other problems

dincluding attitude estimation with the aid of spherical ‘harmonic analysis,

we refer thé reader to [2]. Suppose we receive"the signal z defined by
dz (t) = [sinB(t)]dt + r /2(t)dw(t) : o i (37)

/(t)dv(t) . T (38)
where v and w are 1ndependent standard Brownian motlons'lndependent of the
randem initial phasz 0(0). We desire to track the signal phase, 6 mod 2m.
As discussed in [6], a useful estimation crxterlon is to choose B(t) to
minimize E[l—cos{B(t)-ﬁ(t))]z(s) 0<s<tl. :

ae(t) = v dt + g

Puttlng the problem into Cartesian coordlnates by deflnlng X, = sina,
X, = cos, we have the bilinear equations
dxl(t] _ ' -q(t}dt/Z Aw at+q 1/2 (t)dv(tn xi(t)
= |- : . 1 ‘ (39)
s, (0| '-(wcdt+ql/2{t)dv(t)) awarz o e -
dz(t) =% (t)dt + r 1/2 (t)dw(t) o y ' (40)
and the optlmal esthate 15
R x Lele
B(t) = tan A \ o . o tan)
- xz(tlt) |
We note tha_t ;1 - r-ina. ;‘E‘/ - r_:onﬁ ara mi nimuan unriaulun -‘.””. i'm‘upul-; Vo ;..-'.-._-.'!
mm OF 1 RS
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» N ~2 ~
CXo under the constralnt xl + xj = ].

' To solve this problem, we expand the conditioral probablllty denSLty
~for 6(t) given {z(s), 0 < s <t} ina Fourier series. The coefficients are

¢ (t) = s=Ele M0 1), ocger] = b_ (t)-;a @) (a2
We then have the coupled equations [6]
. 2 _ | | ,
dcn = - [inwc +‘5— q]cndt, | :
| (c._,~c ) dz + 27I_(c,)at" e
+ n-1 ;n+l + 2mc I (c.) [ _m 1 ] (43)
_ ) 2i nm 1 r

See [6] for a discussion of the structure of the op* lnal filter, Note that
.x2 - 1xl = 2ﬂcl. and thus we need only compute cl to determine 6 however,
c2 ;quples into cl,.'a.lnto c2,
optiral filter to obtain an implementable system. One approach considered
in [€] is to make an approximation based on the assumption that the condi-
_tional density is a "folded normal density," the circular analog of the
normal density. The coefficients of such a dens;ty depend on only two
pararmeters. ‘

etc. Thus we need to approximate the

5 . | ) : o
ame_ = eln TY/2e lnﬁ | , e

and c, = 8W3|c1| €, - Using this relatlopshlp as an approximation in

(44), we obtain an equation for c, that is uncoupled from the other

coefficients. We refer the reader to [6] for sxmulatlon results that in-
dicate that this filter performs better than the opt1ma1 phase~lock loop.
In acdition, dlrectly analogous resuvlts using spherical harmOnlcs have
been obtained in {2] for tne estimation of processes on the 5phere.

VI. CONCLUSIONS
In this paper we have described a number of - technlques for the ana-
lysis of bilinear stochastic systems. . As can be seen from our results and
from those in the. references, this is a class of: systems that is riech-in
both structure and pract1cal appllcatlons. - ey
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